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Abstract We apply a modified subgradient algorithm (MSG) for solving the dual of a
nonlinear and nonconvex optimization problem. The dual scheme we consider uses the sharp
augmented Lagrangian. A desirable feature of this method is primal convergence, which
means that every accumulation point of a primal sequence (which is automatically generated
during the process), is a primal solution. This feature is not true in general for available
variants of MSG. We propose here two new variants of MSG which enjoy both primal and
dual convergence, as long as the dual optimal set is nonempty. These variants have a very
simple choice for the stepsizes. Moreover, we also establish primal convergence when the
dual optimal set is empty. Finally, our second variant of MSG converges in a finite number
of steps.
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Sharp Lagrangian · Modified subgradient algorithm
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1 Introduction

Duality is a very useful tool in optimization. The duality theory obtained through the ordinary
(classical) Lagrangian and its use for convex primal problems is well-known. However, when
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the primal problem is not convex, a duality gap may exist when the ordinary Lagrangian is
used. This justifies the quest for other kinds of Lagrangians, which are able to provide
algorithms for solving a broader family of constrained optimization problems, including
nonconvex ones. Recent literature has focused on dual problems constructed using aug-
mented Lagrangian functions, where the augmenting functions are nonnegative and satisfy
either coercivity assumptions ([11, Chap. 11], [7]) or peak-at-zero-type assumptions (see
[4,12,13]).

A particular kind of such augmented Lagrangian functions is the sharp augmented La-
grangian, which has been recently studied for solving nonconvex and nonsmooth problems
in [1,3,5].

We analyze the duality scheme generated by the sharp augmented Lagrangian, when
applied to nonsmooth and nonconvex problems. The dual problem is a nonsmooth convex
problem (i.e. maximization of a concave function), and we can therefore solve it using the
subgradient method or its variants. These methods (in general) converge slowly, but on the
other hand we obtain a search direction in the calculation of the dual function with no extra
cost, see Theorem 2(a). Gasimov in [5] proposed a modified subgradient algorithm for the
same problem we are considering here. A deflection in the parameter ensures that the dual
values are strictly increasing. This increasing property makes the modified subgradient algo-
rithm very attractive, since (non-modified) subgradient methods in general do not have this
property. Dual convergence results were obtained and numerical experiments were presented
to illustrate the efficiency of the algorithm. In [1] the results of [5] were improved by relaxing
the stepsize selection, and an example showing that the algorithm may fail to achieve primal
convergence was presented. An auxiliary sequence, with an extra cost, was considered, and
a primal convergence result was obtained for this sequence. In [3] an inexact version of
the algorithm is proposed and analyzed. Similar results to those of the exact version were
obtained. The applicability of these algorithms (exact and inexact versions) is better when
we know the primal optimal value or at least a good estimate, see [1, Eqs. 16, 23 and Sect.
5.1] and also [3, Corollary 5.1]. In many problems even an approximate optimal value is both
very hard to obtain and expensive. Therefore, it is desirable to look for a different stepsize
selection rule, unrelated to the optimal value, and such that the convergence properties of the
algorithm are preserved. It is also important to ensure convergence of the primal sequence
generated by the algorithm.

In this paper we consider the same modified subgradient algorithm as [1,5], but we pro-
pose a very simple stepsize selection rule. With this rule we get rid of the dependence on
the optimal value. We obtain dual convergence results as in [1] and [5]. We also show that
our algorithm has the property that all accumulation points of the primal sequence generated
by the algorithm are primal solutions, and thus no auxiliary sequence (as required in [1]) is
needed. This primal convergence is ensured even if the dual optimal set is empty. The latter
result is very important, because, in general, it is impossible to know “a priori” whether the
dual problem has optimal solutions. We also show that if there exists a dual solution, then it
is possible to consider larger stepsizes, which ensure that after a finite number of iterations
of the algorithm both primal and dual optimal solutions are reached.

This paper is organized as follows. Section 2 contains some preliminary materials
regarding sharp Lagrangian and strong duality. In Sect. 3 we present the algorithm, as well
as some basics results. In this section we also establish our main results, Theorems 4 and 5.
In Sect. 4 we present a stepsize selection rule which ensures that the sequence generated by
the algorithm reaches a primal-dual solution after a finite number of iterations. By means
of a simple example, we show in Sect. 5 that the stepsize used in [5] may not have primal
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convergence, while our stepsize produces a primal solution in a finite number of steps. The
issue of finite convergence is discussed in detail in Remark 8 at the end of Sect. 5.

Our notation is the usual one: ‖ · ‖ is the Euclidean norm, 〈·, ·〉 is the Euclidean scalar
product, R++ := (0,∞), R+ := [0,∞), R+∞ := R ∪ {+∞}, R−∞ := R ∪ {−∞},
R̄ := R−∞ ∪ {+∞}.

2 Preliminaries

We consider the nonlinear (primal) optimization problem

minimize f (x) s.t. x in K , h(x) = 0, (P)

where f : R
n → R, is lower semicontinuous (lsc), h : R

n → R
m is continuous and K ⊂ R

n

is compact. We consider the sharp Lagrangian (see [11, Chap. 11]):

L(x, y, c) := f (x)− 〈y, h(x)〉 + c‖h(x)‖. (2.1)

Associated with the sharp Lagrangian we consider the dual function q : R
m × R+ → R

defined by

q(y, c) = inf
x∈K

L(x, y, c)

and the dual augmented problem given by

maximize q(y, c) s.t. (y, c) in R
m × R+. (D)

The sharp Lagrangian is a particular case of a more general family of Augmented Lagrangians
proposed by Rockafellar and Wets in [11, Chap. 11]. Results on weak and strong duality,
saddle point properties, and exact penalty parameter were established in [11, Chap. 11]. Fur-
ther extensions of these augmented Lagrangians and their properties have been studied, e.g.,
in [7–13]. For further use, we recall in this section some of the existing results for augmented
Lagrangians. The corresponding proofs can be found in [7,11,12] and references therein.

We consider the following primal problem.

minimize ϕ(x) s.t. x ∈ R
n, (2.2)

where ϕ : R
n → R+∞ is a proper, lsc function. A dualizing parameterization for ϕ is a

function φ : R
n × R

m → R̄, such that φ(x, 0) = ϕ(x) for all x ∈ R
n . Following [11, Chap.

11], the augmented Lagrangian � : R
n × R

m × R+ → R̄ is defined as

�(x, y, c) := inf
z∈Rm

{φ(x, z)− 〈y, z〉 + cσ(z)},

where σ : R
m → R+∞ is a lsc and convex function such that

argmin σ(x) = 0 and σ(0) = 0.

The dual function ψ : R
m × R+ → R̄ induced by the augmented Lagrangian � is defined by

ψ(y, c) = inf
x∈Rn

�(x, y, c).
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The dual problem is given by

maximize ψ(y, c) s.t. (y, c) ∈ R
m × R+. (2.3)

Denote by m̄p and m̄d the optimal primal and dual values respectively. The next definition
was introduced in [11, Definition 1.16].

Definition 2.1 A function f : R
n ×R

m → R̄, is said to be level-bounded in x locally uniform
in z, if for all z̄ ∈ R

m and for all α ∈ R, there exist an open neighborhood of z̄, V ⊂ R
m and

a bounded set B ⊂ R
n , such that

LV, f (α) := {x ∈ R
n : f (x, z) ≤ α} ⊂ B, f or all z ∈ V .

The following proposition summarizes some basic results concerning the primal problem
(2.2) and its dual (2.3).

Proposition 1 Consider the primal problem (2.2) and the dual augmented problem (2.3).
The following statements hold.

(i) The dual function ψ is a concave and upper semicontinuous function (usc).
(ii) If r > c then ψ(y, r) ≥ ψ(y, c) for all y ∈ R

m. In particular, if (y, c) is a dual optimal
solution, then also (y, r) is a dual optimal solution.

Proof Item (i) follows from the fact that ψ is the infimum of affine functions. Item (ii) is a
consequence of the fact that σ is nonnegative.

From now on we use the following notation: P∗, D∗ are the primal and dual optimal
solution sets of (P) and (D) respectively, MP and MD are the optimal primal and dual values,
respectively.

The fact that in our approach the penalty parameter c is a dual variable, together with the
use of a sharp Lagrangian, has some interesting consequences on the structure of the dual
solution set D∗, improving upon the result of Proposition 1(ii).

Proposition 2 Take (y∗, c∗) ∈ D∗, ρ > 0, and define �ρ = {(y, c) : ‖y − y∗‖ ≤ ρ, c ≥
c∗ + ρ}. Then �ρ ⊂ D∗ for all ρ > 0.

Proof Take (y, c) ∈ �ρ . By assumption q(y∗, c∗) = MD . Therefore,

q(y, c) = inf
x∈K

{ f (x)− 〈h(x), y〉 + c‖h(x)‖}
= inf

x∈K
{ f (x)− 〈h(x), y∗〉 + c∗‖h(x)‖ + (c − c∗)‖h(x)‖ − 〈h(x), y − y∗〉}

≥ inf
x∈K

{ f (x)− 〈h(x), y∗〉 + c∗‖h(x)‖ + (c − c∗ − ‖y − y∗‖)‖h(x)‖}
≥ inf

x∈K
{ f (x)− 〈h(x), y∗〉 + c∗‖h(x)‖ + (c − c∗ − ρ)‖h(x)‖}

≥ inf
x∈K

{ f (x)− 〈h(x), y∗〉 + c∗‖h(x)‖} = q(y∗, c∗) = MD, (2.4)

using Cauchy–Schwarz inequality in the first inequality, the fact that ‖y − y∗‖ ≤ ρ in the
second one, and the fact that c ≥ c∗ + ρ in the third one. We conclude from (2.4) that
q(y, c) = MD and so (y, c) ∈ D∗.

Corollary 1 If (y∗, c∗) ∈ D∗ then {(0, c) : c ≥ c∗ + ‖y∗‖} ⊂ D∗.

Proof Follows from Proposition 2, taking ρ = ‖y∗‖.
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The next theorem guarantees that there is no duality gap for the primal-dual pair (2.2)–
(2.3).

Theorem 1 Consider the primal problem (2.2) and its dual augmented problem (2.3).
Assume that the dualizing parameterization function φ : R

n × R
m → R̄ for the primal

function ϕ is proper, lsc and level bounded in x locally uniform in z. Suppose that there
exists some (y, r) ∈ R

m × R+, such that ψ(y, r) > −∞. Then zero duality gap holds, i.e.
m̄ p = m̄d .

Proof See for instance, [11, Theorem 11.59].

It is not difficult to see that the sharp Lagrangian is an augmented Lagrangian. For z ∈ R
m ,

define 	(z) := K ∩ {x : h(x) = z}, where K and h are as in problem (P). Given A ⊂ R
n ,

δA : R
n → R+∞ is defined as δA(x) = 0, if x ∈ A; and δA(x) = ∞ otherwise. Let

ϕ(x) :=
{

f (x) x ∈ 	(0),
∞ otherwise,

where f is as in problem (P). Consider now a dualizing parameterization function given by
φ(x, z) = f (x)+ δ	(z)(x). It is easy to see that φ(x, 0) = ϕ(x) for all x ∈ R

n . Using also
(2.1) and σ := ‖ · ‖, we have that �(x, y, c) = δK (x) + L(x, y, c) and q(y, c) = ψ(y, c).
Thus, since K is compact, it is easy to see that the hypotheses of Theorem 1 are verified. In
particular there is no duality gap between primal problem (P) and dual problem (D). We
give next some definitions.

Definition 2.2 Consider a concave function q : R
p → R−∞. The superdifferential of q at

y0 ∈ dom(q) := {y ∈ R
p : q(y) > −∞} is the set ∂q(y0) defined by

∂q(y0) := {z ∈ R
p : q(y) ≤ q(y0)+ 〈z, y − y0〉∀y ∈ R

p}.
We mention that the set ∂q(y0) is called subdifferential in [1,3,5]. Since q(·) is concave, we
prefer our notation in order to avoid any confusion between the set above and the subdiffer-
ential of a convex function, where the inequality is reversed.

Consider the following set

A(y, c) = {x ∈ K ⊂ R
n : L(x, y, c) = q(y, c)}. (2.5)

Note that A(y, c) = argmin x∈K L(x, y, c). Since K is compact, f is a lsc function and h
is a continuous function, we have that L(·, y, c) is a lsc function for all (y, c) ∈ R

m × R+,
and A(y, c) is nonempty for all (y, c) ∈ R

m × R+. Thus, we have that q(y, c) > −∞, for
all (y, c) ∈ R

m × R+, and also MP > −∞. In particular, since by Proposition 1(i) the dual
function q is concave, we conclude also that q is continuous (note that q can be extended in
a natural way to R

m × R, preserving its concavity).

3 Algorithm 1

We state next our first version of the Modified Subgradient Algorithm (MSG-1).

Step 0. Choose (y0, c0) ∈ R
m × R+, and exogenous parameters, {εk} ⊂ R++. Also fix

β ≥ η > 0. Set k := 0.

123



352 J Glob Optim (2010) 46:347–361

Step 1 (Subproblem and stopping criterion)

(a) Find xk ∈ A(yk, ck),
(b) if h(xk) = 0 stop,
(c) if h(xk) �= 0, go to Step 2.

Step 2 (Stepsizes selection and update of dual variable)

ηk := min{η, ‖h(xk)‖}, βk := max{β, ‖h(xk)‖}, and choose sk in [ηk, βk],
yk+1 := yk − skh(xk),
ck+1 := ck + (εk + sk)‖h(xk)‖.
Set k = k + 1 and go to Step 1.

Remark 1 Note that [η, β] ⊂ [ηk, βk]. In particular, if we consider η = β then we see that
constant stepsizes (sk = η, for all k) can be considered. Another simple choice for the stepsize
is sk := ‖h(xk)‖.

Remark 2 The parameter εk (which “modifies” the classical subgradient step) was proposed
by Gasimov [5]. It ensures that the dual values are strictly increasing. It is well known that
pure subgradient methods (i.e., when εk ≡ 0) in general do not have this property. This is
a special characteristic of this modified subgradient algorithm. The stepsize selection rule
given above has not been considered in [1,3,5,6]. In all these references, some knowledge
of the optimal value is required (see, for instance [3, Corollary 5.1]). The next theorem
establishes the relation between the minimization implicit in A(y, c) and the superdiffer-
ential ∂q(y, c). This result can be found in [3]. However, we prove it here for the sake of
completeness.

Theorem 2 The following results hold for MSG-1.

(a) If x̂ ∈ A(ŷ, ĉ), then (−h(x̂), ‖h(x̂)‖) ∈ ∂q(ŷ, ĉ).
(b) If εk = αksk , (αk > 0), with {αk} bounded, then MSG-1 generates a dual bounded

sequence {(yk, ck)} if and only if
∑

k sk‖h(xk)‖ < +∞.

(c) If MSG-1 stops at iteration k, then xk is an optimal primal solution, and (yk, ck) is an
optimal dual solution.

Proof (a) For all (y, c) ∈ R
m × R++ we have

q(y, c) = min
x∈K

{ f (x)− 〈h(x), y〉 + c‖h(x)‖}
≤ f (x̂)− 〈h(x̂), y〉 + c‖h(x̂)‖
= f (x̂)− 〈h(x̂), ŷ〉 + ĉ‖h(x̂)‖ + 〈−h(x̂), y − ŷ〉 + (c − ĉ)‖h(x̂)‖.

(3.1)

Using that x̂ ∈ A(ŷ, ĉ) in (3.1), we obtain

q(y, c) ≤ q(ŷ, ĉ)+ 〈−h(x̂), y − ŷ〉 + (c − ĉ) ‖h(x̂)‖
= q(ŷ, ĉ)+ 〈(−h(x̂), ‖h(x̂)‖), (y, c)− (ŷ, ĉ)〉.

That is, (−h(x̂), ‖h(x̂)‖) ∈ ∂q(ŷ, ĉ).
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(b) Since {αk} is bounded, the equivalence follows from the expressions:

‖yk+1 − y0‖ ≤
k∑

j=0

‖y j+1 − y j‖ =
k∑

j=0

s j‖h(x j )‖, (3.2)

ck+1 − c0 =
k∑

j=0

c j+1 − c j =
k∑

j=0

(α j + 1)s j‖h(x j )‖. (3.3)

(c) If MSG-1 stops at iteration k, then h(xk) = 0. Therefore by Theorem 1 we have that

MD = MP ≤ f (xk) = f (xk)− 〈yk, 0〉 + ck‖0‖ = q(yk, ck) ≤ MP ,

which implies that MD = q(yk, ck), and f (xk) = MP . That is to say, xk is an optimal primal
solution, and (yk, ck) is an optimal dual solution. The theorem is proved.

The following theorem describes an advantage of MSG-1 over the classical subgradient
method, namely the monotonic improvement of the dual values.

Theorem 3 Let {(yk, ck)} be the sequence generated by MSG-1. If (yk, ck) is not a dual
solution, then q(yk+1, ck+1) > q(yk, ck).

Proof The proof of this result is given in [5, Theorem 7]. Even though the assumptions in
[5] include continuity of f , only lower semicontinuity is required in the proof.

Remark 3 We mention that the results in Theorems 2, 3 do not depend on the choice of the
stepsize sk .

3.1 Convergence results

From now on we assume that h(xk) �= 0 for all k, which means that the algorithm produces
an infinite primal-dual sequence.

The next result provides an estimate which is essential for proving our main result. We
will use in the sequel the following notation: qk := q(yk, ck), q̄ := MD .

Lemma 1 The following estimate is satisfied for all k ≥ 1,

max{q0 +
⎛
⎝k−1∑

j=0

α j s j‖h(x j )‖
⎞
⎠ ‖h(xk)‖, f (xk)− 〈y0, h(xk)〉} ≤ qk . (3.4)

Proof It is easy to see that yk = y0 −
k−1∑
j=0

s j h(x j ). Therefore we have

〈yk, h(xk)〉 = 〈y0, h(xk)〉 −
k−1∑
j=0

s j 〈h(x j ), h(xk)〉 ≤ 〈y0, h(xk)〉 +
k−1∑
j=0

s j‖h(x j )‖‖h(xk)‖,

using Cauchy–Schwarz inequality. Hence

qk = f (xk)− 〈yk, h(xk)〉 + ck‖h(xk)‖ ≥ f (xk)

−〈y0, h(xk)〉 +
⎛
⎝ck −

k−1∑
j=0

s j‖h(x j )‖
⎞
⎠ ‖h(xk)‖. (3.5)
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On the other hand, a simple manipulation in (3.3) gives

ck −
k−1∑
j=0

s j‖h(x j )‖ = c0 +
k−1∑
j=0

α j s j‖h(x j )‖ ≥ 0. (3.6)

Using (3.6) in (3.5) we obtain

qk ≥ f (xk)− 〈y0, h(xk)〉 + c0‖h(xk)‖ +
k−1∑
j=0

α j s j‖h(x j )‖‖h(xk)‖

≥ max{ f (xk)− 〈y0, h(xk)〉, q0 +
k−1∑
j=0

α j s j‖h(x j )‖‖h(xk)‖}.

The result follows.

Lemma 2 Consider the sequence {(yk, ck)} generated by MSG-1. If {ck} is bounded then
{yk} is bounded. If the dual optimal set is nonempty, the converse of the last statement also
holds.

Proof The first statement follows directly from (3.2) and (3.3). For proving the second
statement, suppose that {yk} is bounded and take a dual solution (ȳ, c̄). The supergradient
inequality yields

q(ȳ, c̄) ≤ q(yk, ck)− 〈h(xk), ȳ − yk〉 + (c̄ − ck)‖h(xk)‖,
and therefore

ck ≤ q(yk, ck)− q(ȳ, c̄)

‖h(xk)‖ + ‖yk − ȳ‖ + c̄,

using Cauchy–Schwarz inequality. Since (ȳ, c̄) is a dual solution we get that

ck ≤ ‖yk − ȳ‖ + c̄.

Therefore, since {yk} is bounded, we conclude that {ck} is bounded. The result follows.

Next, we establish convergence for a stepsize which is more general than the one used in
Step 2 of MSG-1. Indeed, we prove convergence for sk ∈ [ηk, β̄k], where β̄k ≥ βk . More
precisely, we make the following assumption.
(A1) : There exist k̂ > 0 such that

ηk ≤ sk ≤ βk + 2(q̄ − qk)

‖h(xk)‖2 =: β̄k for all k > k̂.

Remark 4 At least from the theoretical point of view, the step (A1) is an improvement over
the stepsizes used in [5,1]. Indeed, the step (A1) ensures primal and dual convergence, while
in [1,5] only dual convergence results hold, and primal convergence is proved only for an
auxiliary primal sequence in [1]. In fact in [1, Example 1], the authors presented a problem
for which the MSG-1 with their stepsize selection rule produces a primal sequence which
does not converge to a primal solution. We will see later on that the step (A1) forces the
primal sequence to converge to a feasible point (see Theorem 4). The dual optimal value
considered in Assumption (A1) is just for enlarging the interval where the stepsizes can be
chosen. It is clear that the interval [ηk, βk] considered at iteration k in Step 2 of MSG-1, is
contained in the interval [ηk, β̄k], and sk can be chosen in [ηk, βk] without the knowledge of
the dual optimal value.
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From now on we take εk = αksk for all k, where {αk} ⊂ (0, α) for some α > 0. Next we
establish our main convergence results.

Theorem 4 If the dual optimal set is nonempty then the following statements hold.

i) Algorithm MSG-1 generates a bounded dual sequence.
ii) {h(xk)} converges to zero and {qk} converges to q̄.

iii) All accumulation points of {(yk, ck)} are dual solutions.
iv) All accumulation points of {xk} are primal solutions.

Proof For proving (i), note that if {ck} is bounded then {(yk, ck)} is bounded by Lemma 2.
Thus it suffices to prove that {ck} is bounded. Suppose, for the sake of contradiction, that
{ck} is unbounded. By monotonicity of {ck} we have that

lim
k→∞ ck = ∞. (3.7)

Observe that by continuity of h and compactness of K , we have that supk ‖h(xk)‖ := b < ∞,
in particular {βk} is bounded. Consider β̂ such that βk ≤ β̂ for all k. Take k̂ as in Assumption

(A1). Take (ȳ, c̄) ∈ D∗. In view of (3.7), there exists k0 > k̂ such that ck ≥ c̄ + β̂b

2
, for all

k ≥ k0. For all k ≥ k0 we can write

‖ȳ − yk+1‖2 = ‖ȳ − (yk − skh(xk))‖2

= ‖ȳ − yk‖2 + s2
k ‖h(xk)‖2 + 2sk〈ȳ − yk, h(xk)〉

≤ ‖ȳ − yk‖2 + s2
k ‖h(xk)‖2 + 2sk [qk − q̄ + ‖h(xk)‖(c̄ − ck)] , (3.8)

using the update of the dual variables in the first equality, and the supergradient inequal-
ity in the inequality. Rearranging the right-hand side of the expression above, and using
Assumption (A1), we obtain

‖ȳ − yk+1‖2 ≤ ‖ȳ − yk‖2 + sk[sk‖h(xk)‖2 + 2(qk − q̄)] + 2sk‖h(xk)‖(c̄ − ck)

≤ ‖ȳ − yk‖2 + skβk‖h(xk)‖2 + 2sk‖h(xk)‖(c̄ − ck)

= ‖ȳ − yk‖2 + sk‖h(xk)‖(βk‖h(xk)‖ + 2c̄ − 2ck)

≤ ‖ȳ − yk‖2 + sk‖h(xk)‖(β̂b + 2c̄ − 2ck), (3.9)

using the definition of b in the last inequality. Therefore,

‖ȳ − yk+1‖2 ≤ ‖ȳ − yk‖2 + sk‖h(xk)‖(β̂b + 2c̄ − 2ck). (3.10)

The expression between parentheses in (3.10) is negative by definition of k0. Hence, we
obtain

‖yk+1 − ȳ‖ ≤ ‖yk − ȳ‖ ≤ ‖yk0 − ȳ‖, for all k ≥ k0. (3.11)

Thus, {yk} is bounded, and by Lemma 2 we conclude that {(yk, ck)} is bounded, in con-
tradiction with (3.7), and hence (i) holds. Moreover, we have that

∑
k sk‖h(xk)‖ < ∞, by

Theorem 2(b). In particular {sk‖h(xk)‖} goes to zero. On the other hand, by the first inequality
in Assumption (A1) we have that

sk‖h(xk)‖ ≥ ηk‖h(xk)‖ > 0 for all k ≥ k̂, (3.12)

where ηk = min{η, ‖h(xk)‖}. Hence we obtain from (3.12) that {h(xk)} converges to zero.
We are going to prove (i i) and (iv) simultaneously. Since {xk} ⊂ K and K is compact, {xk}
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is bounded. Take an accumulation point x̄ of {xk}. Suppose that {xk j } converges to x̄ . By
lower semi-continuity of f and Lemma 1, we obtain

f (x̄) ≤ lim inf
j

(
f (xk j )− 〈y0, h(xk j )〉

) ≤ lim inf
j

qk j ≤ q̄ = MP , (3.13)

using also the fact that {h(xk j )} converges to zero. On the other hand, by continuity of h
we have that h(x̄) = 0. Therefore, we conclude from (3.13) that x̄ is a primal solution. In
particular, all inequalities in (3.13) are equalities and then lim inf qk j = q̄. Since {qk} is
increasing by Theorem 3, we get that {qk} converges to q̄ , and we have thus proved (i i)
and (iv). For proving (i i i), take a subsequence {(yk j , ck j )} j converging for some (ŷ, ĉ). By
upper-semicontinuity of q (Proposition 1(i)), we get

q(ŷ, ĉ) ≥ lim sup
j

q(yk j , ck j ) = lim
j

qk j = q̄,

using the fact that {qk} converges to q̄ by (i i). Hence we have that (ŷ, ĉ) is a dual solution.
This proves (i i i), and the theorem follows.

Theorem 4 presents convergence results for the primal and dual sequences generated
by Algorithm MSG-1 assuming the existence of an optimal dual solution. The next theorem
ensures convergence of the primal sequence generated by MSG-1 even when the dual solution
set is empty. This is very important, because in general, it is not possible to know “a priori”
whether the dual solution set is nonempty. Also, in our dual formulation, which includes the
penalty parameter c as a dual variable, optimal dual solutions exist only when the problem
admits exact penalization (cf. Remark 8 in Sect. 4), and many problems of interest fail to
enjoy this property.

Theorem 5 Assume that εk = αksk and α̂ := inf
k
αk > 0. Then {h(xk)} converges to zero

and {qk} converges to q̄. Moreover, all accumulation points of the primal sequence {xk} are
primal solutions.

Proof By monotonicity of the sequence {ck}, either it goes to infinite, or it converges to
some ĉ. In the second case, we have that {ck} is bounded, therefore by Lemma 2 we get that
{(yk, ck)} is also bounded. Hence repeating the proof of Theorem 4 (i i), (i i i) and (iv)we get
that the dual solution set is nonempty (observe that in Theorem 4 we use the nonemptiness
of the dual solution set just for ensuring the boundedness of the dual sequence). Thus, in this
case (i.e., when {ck} is bounded) the theorem is proved. So we just need to consider the case
in which {ck} goes to infinite. In this case, by Theorem 2(b),

∑
j s j‖h(x j )‖ = ∞. On the

other hand, by Lemma 1 we obtain that

α̂

⎛
⎝k−1∑

j=0

s j‖h(x j )‖
⎞
⎠ ‖h(xk)‖ ≤

⎛
⎝k−1∑

j=0

α j s j‖h(x j )‖
⎞
⎠ ‖h(xk)‖ ≤ qk − q0 ≤ q̄ − q0. (3.14)

Note that q̄ < ∞ and
∑

j s j‖h(x j )‖ = ∞. Therefore we conclude that {h(xk)} converges
to zero. The proof of the remaining statements follows the same steps as in (i i) and (iv) of
Theorem 4.

Remark 5 Theorem 5 ensures that MSG-1 generates a primal sequence converging to the
primal solution set, in the sense that all its accumulation points are primal solutions. Note
that our results hold without differentiability or convexity assumptions.
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The following corollary establishes the equivalence between the boundedness of the dual
sequence and the existence of dual solutions. A similar result was obtained in [1,3].

Corollary 2 Consider a dual sequence {(yk, ck)} generated by Algorithm MSG-1. This se-
quence is bounded if and only if the dual optimal set is nonempty.

Proof If the dual optimal set is nonempty, then Theorem 4 (i) ensures that {(yk, ck)} is
bounded. For proving the converse statement, we just note that in the proof of Theorem 4,
we only use the existence of a dual solution for ensuring boundedness of the dual sequence.
Thus, if we assume that the dual sequence is bounded, we can repeat the proof of Theorem
4 (i i) and (i i i), and prove that the dual optimal set is nonempty. The result follows.

In Theorem 4 we proved that all accumulation points of the dual sequence {(yk, ck)}
generated by MSG-1 are optimal solutions. Since the dual problem is convex and we are
applying a subgradient method, we should expect convergence of the whole sequence. The
next proposition establishes this result.

Proposition 3 Consider the dual sequence {(yk, ck)} generated by MSG-1, and assume that
εk = αksk and 0 < αk < α < ∞. If D∗ is nonempty, then {(yk, ck)} converges to a dual
solution.

Proof Since D∗ is nonempty, it follows from Theorem 4 that {(yk, ck)} is bounded. In partic-
ular {yk} and {ck} are bounded. Take an accumulation point (ȳ, c̄) of {(yk, ck)}. It follows that
(ȳ, c̄) belongs to D∗ (Theorem 4(i i i)). Since {ck} is increasing and bounded, it converges to
c̄. Therefore we just need to prove that {yk} converges to ȳ. Consider a subsequence {yk j } j

converging to ȳ. Using the same calculations as in (3.10), we obtain

‖ȳ − yk+1‖2 ≤ ‖ȳ − yk‖2 + β̃sk‖h(xk)‖, (3.15)

where β̃ := β̂b + 2c̄, with b and β̂ as in the proof of Theorem 4. On the other hand, since
{(yk, ck)} is bounded, we have that

∑
sk‖h(xk)‖ < ∞, by Theorem 2. Therefore, given an

arbitrary ε > 0, there exists k0 sufficiently large such that∑
k>k0

sk‖h(xk)‖ < ε

2β̃
.

Since {yk j } j converges to ȳ, there exists j0 such that k j0 > k0 and ‖yk j − ȳ‖2 < ε
2 for all

j ≥ j0. Using (3.15) we obtain, for all k > k j0 ,

‖ȳ − yk‖2 ≤ ‖ȳ − yk j0
‖2 + β̃

k−1∑
l=k j0

sl‖h(xl)‖ < ε. (3.16)

Since ε is arbitrary, we conclude that {yk} converges to ȳ. Therefore {(yk, ck)} converges to
(ȳ, c̄), and the proposition follows.

4 Algorithm 2

In this section we present and analyze algorithm MSG-2. This algorithm has a stepsize which
ensures finite termination, as long as there exist dual solutions.

Step 0 Choose (y0, c0) ∈ R
m × R++, and exogenous parameters {εk} ⊂ R++. Also fix

β̄ ≥ η̄ > 0. Set k := 0.
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Step 1 (Subproblem and stopping criterion)

(a) Find xk ∈ A(yk, ck),
(b) if h(xk) = 0 stop,
(c) if h(xk) �= 0, go to Step 2.

Step 2 (Step-size Choice and update of dual variables)

ηk := η̄
‖h(xk )‖ , βk := β̄

‖h(xk )‖ , and choose sk ∈ [ηk, βk],
yk+1 := yk − skh(xk),
ck+1 := ck + (εk + sk)‖h(xk)‖.
Set k = k + 1 and go to Step 1.

Observe that the only difference between MSG-1 and MSG-2 is the choice of βk and ηk .

Theorem 6 Suppose that the dual solution set is nonempty. Consider the MSG-2 algorithm.
Choose εk = αksk , with {αk} ⊂ (0, α) for some α > 0. Then there exists k̄ > 0 such that
h(xk̄) = 0, i.e. MSG-2 stops at the k̄-th iteration. In particular xk̄ and (yk̄, ck̄) are primal
and dual optimal solutions respectively.

Proof We prove first that the dual sequence is bounded. If ck is bounded, then {yk} is also
bounded by Lemma 2. Assuming, for the sake of contradiction, that {ck} is unbounded, we
can repeat the same calculations as in (3.8), (observing that qk ≤ q̄), to get

‖ȳ − yk+1‖2 ≤ ‖ȳ − yk‖2 + sk‖h(xk)‖(βk‖h(xk)‖ + 2c̄ − 2ck)

= ‖ȳ − yk‖2 + sk‖h(xk)‖(β̄ + 2c̄ − 2ck). (4.1)

Since {ck} is increasing, there exists k0 such that ck >
β̄
2 + c̄ for all k > k0. Using this

estimate in (4.1), we obtain, for all k > k0,

‖ȳ − yk+1‖2 ≤ ‖ȳ − yk‖2. (4.2)

From (4.2) we obtain that {yk} is bounded. Thus, {(yk, ck)} is bounded by Lemma 2, con-
tradicting the supposed unboundedness of {ck}. Hence, the dual sequence is bounded. Let us
prove now that the algorithm has finite termination. If this is not true, we must have h(xk) �= 0
for all k (note that the algorithm stops at iteration k if and only if h(xk) = 0). Using the fact
that the sequence {ck} is bounded and the definition of the stepsize, we can write

∞ > lim
k→∞ ck − c0 =

∞∑
k=0

(ck+1 − ck) =
∞∑

k=0

(εk + sk)‖h(xk)‖ ≥
∞∑

k=0

sk‖h(xk)‖ ≥
∞∑

k=0

η̄ = ∞,

which entails a contradiction. Thus there exists k̄ such that h(xk̄) = 0. In view of Remark 3,
the result follows by Theorem 2(c).

5 Final remarks

As established above, our stepsize selection rules allow us to prove primal convergence,
which in principle does not hold for the selection rule proposed by Gasimov in [5]. We show
next that the improvement over the convergence analysis in [5] is not purely theoretical, but
has indeed computational consequences; we do this by exhibiting a simple example where
MSG with our stepsize rule finds the primal solution after a finite number of steps, while
MSG with the stepsize rule given in [5] stays away from it.
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Example 1 Consider the following primal problem:

min f (x) := −x subject to h(x) := x = 0 and x ∈ [0, 1]. (5.1)

The sharp Lagrangian related to problem (5.1) is:

L(x, y, c) = −x − yx + c|x |,
and the dual function is

q(y, c) = min
x∈[0,1] L(x, y, c) = min

x∈[0,1](c − y − 1)x .

Therefore the dual problem is stated as

max
(y,c)∈R×R+

q(y, c).

Let A(y, c) := argmin x∈[0,1]L(x, y, c). It follows that:

A(y, c) = {0} if c − y ≥ 1,
A(y, c) = {1} if c − y < 1.

(5.2)

In the current example we consider an initial point (y0, c0) satisfying 0 ≤ c0 − y0 < 1. From
(5.2) we see that only two situations can hold for the primal sequence generated by MSG:

a) xk = 1 for all k, or
b) xk = 1 for k < k̄ and xk̄ = 0, for some k̄.

We claim that the MSG with stepsize as in [5] satisfies case (a), while our stepsize satis-
fies case (b). Observe that case (b) is the desirable situation, because in this case we have
ck̄ − yk̄ ≥ 1, q(yk̄, ck̄) = 0 = MP (where MP is the optimal value) and h(xk̄) = h(0) = 0.
Thus, MSG stops at iteration k̄, producing a primal-dual solution. On the other hand, in case
(a) we have ck − yk < 1, q(yk, ck) = ck − yk − 1 < 0 and h(xk) = h(1) = 1. In the latter
situation, the dual update in MSG is

ck+1 = ck + (1 + αk)sk |h(xk)| = ck + (1 + αk)sk

yk+1 = yk − skh(xk) = yk − sk .

Hence, taking αk = 1
2 yields

ck+1 − yk+1 = ck − yk + (2 + αk)sk = ck − yk + 5

2
sk . (5.3)

We recall that the stepsize rule suggested in [5] is sk = q̄ − qk

5‖h(xk)‖2 , which in the current

situation becomes

sk = 0 − (ck − yk − 1)

5
= 1 − (ck − yk)

5
.

Applying MSG with the stepsize rule proposed in [5], and supposing that at the k-th iteration
ck − yk < 1, we have

ck+1 − yk+1 = ck − yk

2
+ 1

2
< 1.

Thus a dual sequence {(yk, ck)} satisfying ck − yk < 1 and a primal sequence xk = 1 for
all k (case (a)) are generated. The dual sequence converges to a dual solution, in agreement
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with the convergence results in [1, Theorem 10], but the primal sequence does not approach
the primal solution x∗ = 0.

On the other hand, our method overcomes this obstacle, obtaining a primal solution after
a finite number of iterations (case (b)), as we show next. Take β > η > 0. Suppose that
the stepsize sk satisfies sk ∈ [min{η, 1},max{β, 1}] for each k ≤ k1, for some k1. In this
situation we have, using (5.3),

ck+1 − yk+1 ≥ ck − yk + 5

2
min{η, 1}.

It follows recursively that ck1 − yk1 ≥ c0 − y0 + 5k1
2 min{η, 1}. Since c0 − y0 ≥ 0, if

k1 >
2

5 min{η,1} then ck1 − yk1 > 1, so that, in view of (5.2), case (b) holds and MSG stops at
most at iteration k1, achieving the primal solution x∗ = 0.

Remark 6 Observe that if we consider in the previous example sk = |h(xk)| = 1 (one of the
simple possible choices for sk discussed in Remark 1), then xk+1 = 0, which is the primal
solution.

Remark 7 It is also worthwhile to mention that a standard penalty method, with yk = 0
and penalty parameters ck such that limk→∞ ck = ∞, will exhibit in this example the same
behavior as MSG with our stepsize rule, i.e., finite primal convergence.

Remark 8 A finitely convergent algorithm for nonsmooth and nonconvex problems might
seem too good to be true, but the point here is that the assumption of existence of optimal dual
solutions is stronger than it looks at first sight. Observe that we have included the penalty
parameter c among the dual variables, and hence the existence of optimal dual solutions
implies in particular the existence of an optimal penalty parameter c∗. It is easy to verify that
any c larger than such a c∗ turns out to be an exact penalty parameter, in the sense of [11,
Definition 11.60]. Thus, in our formulation, if optimal dual solutions exist then the problem
admits exact penalization. In such a setting, for achieving finite convergence it is enough to
have a stepsize selection rule which allows ck to attain arbitrarily large values. In fact, after
establishing that the sequence {yk} is bounded, as is the case for both Algorithms 1 and 2,
Proposition 2 provides an alternative argument for the finite convergence of Algorithm 2,
assuming existence of a dual solution (y∗, c∗): if ρ is such that ‖yk − y∗‖ ≤ ρ for all k,
then any pair (y, c) with ‖y − y∗‖ ≤ ρ, c ≥ c∗ + ρ belongs to D∗ by Proposition 2, and
hence we get (yk, ck) ∈ D∗ as soon as ck > c∗ + ρ. Once such a value of k is reached, xk

will be an optimal primal solution, because, as commented above, the fact that xk belongs
to A(yk, ck), as prescribed in Step 1(a) of Algorithm 2, is equivalent to saying that xk is an
exact minimizer of L(·, yk, ck) on K .

Similarly to the argument above, one can establish that if D∗ �= ∅ then the penalty method
with ‖ · ‖ as penalty function also obtains a primal solution after a finite number of iterations.
In this situation yk = 0 for all k, and the penalty parameter ck can be arbitrarily large (see
also Corollary 1).

It should be emphasized, however, that attempting to circumvent the dual updating by
guessing the “right” values of c∗ and ρ (assuming that it is known in advance that the prob-
lem admits exact penalization), does not seem to be in general a good strategy: quite likely
one will overshoot the value of the parameters, and then suffer the consequences, in terms
of numerical instability, of a too large penalty parameter (of course, this comment applies to
any penalty method in the presence of exact penalization; not just to ours). A sensible gradual
increase of the penalty parameter, like the updating of ck in Algorithm 2, is likely to give rise
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to a better numerical behavior. See also the discussion in [2] on the comparison of the actual
numerical behavior of a dual updating similar to ours with a classical penalty method.

A careful study of the numerical behavior of our method, and its comparison with other
variants of subgradient techniques, is the subject of our future research.
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